nanotechnology advantages and disadvantages

nanotechnology advantages and disadvantages:Nanotechnology is the manipulation of matter on a near-atomic scale to produce new structures, materials and devices. The technology promises scientific advancement in many sectors such as medicine, consumer products, energy, materials and manufacturing.

Nanotechnology refers to engineered structures, devices, and systems. Nanomaterials have a length scale between 1 and 100 nanometers. At this size, materials begin to exhibit unique properties that affect physical, chemical, and biological behavior. Researching, developing, and utilizing these properties is at the heart of new technology.

Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes.

Applications of Nanotechnology

After more than 20 years of basic nanoscience research and more than fifteen years of focused R&D under the NNI, applications of nanotechnology are delivering in both expected and unexpected ways on nanotechnology’s promise to benefit society.

Nanotechnology is helping to considerably improve, even revolutionize, many technology and industry sectors: information technology, homeland security, medicine, transportation, energy, food safety, and environmental science, among many others. Described below is a sampling of the rapidly growing list of benefits and applications of nanotechnology.

Nanotechnology has greatly contributed to major advances in computing and electronics, leading to faster, smaller, and more portable systems that can manage and store larger and larger amounts of information. These continuously evolving applications include:

  • Transistors, the basic switches that enable all modern computing, have gotten smaller and smaller through nanotechnology. At the turn of the century, a typical transistor was 130 to 250 nanometers in size. In 2014, Intel created a 14 nanometer transistor, then IBM created the first seven nanometer transistor in 2015, and then Lawrence Berkeley National Lab demonstrated a one nanometer transistor in 2016!  Smaller, faster, and better transistors may mean that soon your computer’s entire memory may be stored on a single tiny chip.
  • Using magnetic random-access memory (MRAM), computers will be able to “boot” almost instantly. MRAM is enabled by nanometer‐scale magnetic tunnel junctions and can quickly and effectively save data during a system shutdown or enable resume‐play features.
  • Ultra-high-definition displays and televisions are now being sold that use quantum dots to produce more vibrant colors while being more energy efficient.
  • Flexible, bendable, foldable, rollable, and stretchable electronics are reaching into various sectors and are being integrated into a variety of products, including wearables, medical applications, aerospace applications, and the Internet of Things. Flexible electronics have been developed using, for example, semiconductor nanomembranes for applications in smartphone and e-reader displays. Other nanomaterials like graphene and cellulosic nanomaterials are being used for various types of flexible electronics to enable wearable and “tattoo” sensors, photovoltaics that can be sewn onto clothing, and electronic paper that can be rolled up. Making flat, flexible, lightweight, non-brittle, highly efficient electronics opens the door to countless smart products.
  • Other computing and electronic products include Flash memory chips for smart phones and thumb drives; ultra-responsive hearing aids; antimicrobial/antibacterial coatings on keyboards and cell phone casings; conductive inks for printed electronics for RFID/smart cards/smart packaging; and flexible displays for e-book readers.
  • Nanoparticle copper suspensions have been developed as a safer, cheaper, and more reliable alternative to lead-based solder and other hazardous materials commonly used to fuse electronics in the assembly process.

Medical and Healthcare Applications

Nanotechnology is already broadening the medical tools, knowledge, and therapies currently available to clinicians. Nanomedicine, the application of nanotechnology in medicine, draws on the natural scale of biological phenomena to produce precise solutions for disease prevention, diagnosis, and treatment. Below are some examples of recent advances in this area:

  • Commercial applications have adapted gold nanoparticles as probes for the detection of targeted sequences of nucleic acids, and gold nanoparticles are also being clinically investigated as potential treatments for cancer and other diseases.
  • Better imaging and diagnostic tools enabled by nanotechnology are paving the way for earlier diagnosis, more individualized treatment options, and better therapeutic success rates.
  • Nanotechnology is being studied for both the diagnosis and treatment of atherosclerosis, or the buildup of plaque in arteries. In one technique, researchers created a nanoparticle that mimics the body’s “good” cholesterol, known as HDL (high-density lipoprotein), which helps to shrink plaque.
  • The design and engineering of advanced solid-state nanopore materials could allow for the development of novel gene sequencing technologies that enable single-molecule detection at low cost and high speed with minimal sample preparation and instrumentation.
  • Nanotechnology researchers are working on a number of different therapeutics where a nanoparticle can encapsulate or otherwise help to deliver medication directly to cancer cells and minimize the risk of damage to healthy tissue. This has the potential to change the way doctors treat cancer and dramatically reduce the toxic effects of chemotherapy.
  • Research in the use of nanotechnology for regenerative medicine spans several application areas, including bone and neural tissue engineering. For instance, novel materials can be engineered to mimic the crystal mineral structure of human bone or used as a restorative resin for dental applications. Researchers are looking for ways to grow complex tissues with the goal of one day growing human organs for transplant. Researchers are also studying ways to use graphene nanoribbons to help repair spinal cord injuries; preliminary research shows that neurons grow well on the conductive graphene surface.
  • Nanomedicine researchers are looking at ways that nanotechnology can improve vaccines, including vaccine delivery without the use of needles. Researchers also are working to create a universal vaccine scaffold for the annual flu vaccine that would cover more strains and require fewer resources to develop each year.

Energy Applications

Nanotechnology is finding application in traditional energy sources and is greatly enhancing alternative energy approaches to help meet the world’s increasing energy demands. Many scientists are looking into ways to develop clean, affordable, and renewable energy sources, along with means to reduce energy consumption and lessen toxicity burdens on the environment:

  • Nanotechnology is improving the efficiency of fuel production from raw petroleum materials through better catalysis. It is also enabling reduced fuel consumption in vehicles and power plants through higher-efficiency combustion and decreased friction.
  • Nanotechnology is also being applied to oil and gas extraction through, for example, the use of nanotechnology-enabled gas lift valves in offshore operations or the use of nanoparticles to detect microscopic down-well oil pipeline fractures.
  • Researchers are investigating carbon nanotube “scrubbers” and membranes to separate carbon dioxide from power plant exhaust.
  • Researchers are developing wires containing carbon nanotubes that will have much lower resistance than the high-tension wires currently used in the electric grid, thus reducing transmission power loss.
  • Nanotechnology can be incorporated into solar panels to convert sunlight to electricity more efficiently, promising inexpensive solar power in the future. Nanostructured solar cells could be cheaper to manufacture and easier to install, since they can use print-like manufacturing processes and can be made in flexible rolls rather than discrete panels. Newer research suggests that future solar converters might even be “paintable.”
  • Nanotechnology is already being used to develop many new kinds of batteries that are quicker-charging, more efficient, lighter weight, have a higher power density, and hold electrical charge longer.
  • An epoxy containing carbon nanotubes is being used to make windmill blades that are longer, stronger, and lighter-weight than other blades to increase the amount of electricity that windmills can generate.
  • In the area of energy harvesting, researchers are developing thin-film solar electric panels that can be fitted onto computer cases and flexible piezoelectric nanowires woven into clothing to generate usable energy on the go from light, friction, and/or body heat to power mobile electronic devices. Similarly, various nanoscience-based options are being pursued to convert waste heat in computers, automobiles, homes, power plants, etc., to usable electrical power.
  • Energy efficiency and energy saving products are increasing in number and types of application. In addition to those noted above, nanotechnology is enabling more efficient lighting systems; lighter and stronger vehicle chassis materials for the transportation sector; lower energy consumption in advanced electronics; and light-responsive smart coatings for glass.

Environmental Remediation

In addition to the ways that nanotechnology can help improve energy efficiency (see the section above), there are also many ways that it can help detect and clean up environmental contaminants:

  • Nanotechnology could help meet the need for affordable, clean drinking water through rapid, low-cost detection and treatment of impurities in water.
  • Engineers have developed a thin film membrane with nanopores for energy-efficient desalination. This molybdenum disulphide (MoS2) membrane filtered two to five times more water than current conventional filters.
  • Nanoparticles are being developed to clean industrial water pollutants in ground water through chemical reactions that render the pollutants harmless. This process would cost less than methods that require pumping the water out of the ground for treatment.
  • Researchers have developed a nano fabric “paper towel” woven from tiny wires of potassium manganese oxide that can absorb 20 times its weight in oil for cleanup applications. Researchers have also placed magnetic water-repellent nanoparticles in oil spills and used magnets to mechanically remove the oil from the water.
  • Many airplane cabin and other types of air filters are nanotechnology-based filters that allow “mechanical filtration,” in which the fiber material creates nanoscale pores that trap particles larger than the size of the pores. The filters also may contain charcoal layers that remove odors.
  • Nanotechnology-enabled sensors and solutions are now able to detect and identify chemical or biological agents in the air and soil with much higher sensitivity than ever before. Researchers are investigating particles such as self-assembled monolayers on mesoporous supports (SAMMS™), dendrimers, and carbon nanotubes to determine how to apply their unique chemical and physical properties for various kinds of toxic site remediation. Another sensor has been developed by NASA as a smartphone extension that firefighters can use to monitor air quality around fires.

Future Transportation Benefits

Nanotechnology offers the promise of developing multifunctional materials that will contribute to building and maintaining lighter, safer, smarter, and more efficient vehicles, aircraft, spacecraft, and ships. In addition, nanotechnology offers various means to improve the transportation infrastructure:

  • As discussed above, nano-engineered materials in automotive products include polymer nanocomposites structural parts; high-power rechargeable battery systems; thermoelectric materials for temperature control; lower rolling-resistance tires; high-efficiency/low-cost sensors and electronics; thin-film smart solar panels; and fuel additives and improved catalytic converters for cleaner exhaust and extended range. Nano-engineering of aluminum, steel, asphalt, concrete and other cementitious materials, and their recycled forms offers great promise in terms of improving the performance, resiliency, and longevity of highway and transportation infrastructure components while reducing their life cycle cost. New systems may incorporate innovative capabilities into traditional infrastructure materials, such as self-repairing structures or the ability to generate or transmit energy.
  • Nanoscale sensors and devices may provide cost-effective continuous monitoring of the structural integrity and performance of bridges, tunnels, rails, parking structures, and pavements over time. Nanoscale sensors, communications devices, and other innovations enabled by nanoelectronics can also support an enhanced transportation infrastructure that can communicate with vehicle-based systems to help drivers maintain lane position, avoid collisions, adjust travel routes to avoid congestion, and improve drivers’ interfaces to onboard electronics.
  • “Game changing” benefits from the use of nanotechnology-enabled lightweight, high-strength materials would apply to almost any transportation vehicle. For example, it has been estimated that reducing the weight of a commercial jet aircraft by 20 percent could reduce its fuel consumption by as much as 15 percent. A preliminary analysis performed for NASA has indicated that the development and use of advanced nanomaterials with twice the strength of conventional composites would reduce the gross weight of a launch vehicle by as much as 63 percent. Not only could this save a significant amount of energy needed to launch spacecraft into orbit, but it would also enable the development of single stage to orbit launch vehicles, further reducing launch costs, increasing mission reliability, and opening the door to alternative propulsion concepts.

As a whole, the industry is forecast to have compound annual growth rate (CAGR) of around 14.3 percent between 2020 and 2025. While investment consultants at Industry ARC predict that the global nanotechnology market will be worth more than $121 billion in just five years